
3RMM maximizes the discrepancy of the separability and similarity measures of scatters formulated by using
semi-Riemannian metric tensors. The metric tensor of each sample is learned via semisupervised regression. Our method can also be
a general framework for proposing new semisupervised algorithms, utilizing the existing discrepancy-criterion-based algorithms. The
experiments demonstrated on faces and handwritten digits show that S3RMM is promising for semisupervised feature extraction.

Index Terms —Linear discriminant analysis, semisupervised learning, semi-Riemannian manifolds, feature extraction.

Ç

1 INTRODUCTION

DISCRIMINANT feature extraction is a central topic in
pattern recognition and classification. Principal Com-

ponent Analysis (PCA) and Linear Discriminant Analysis
(LDA) are two traditional algorithms for linear feature
extraction [1]. As the underlying structure of data may not
be linear, some nonlinear feature extraction algorithms, e.g.,
Locality Preserving Projections (LPP) [11] and Linear
Laplacian Discrimination (LLD) [51], have been developed.
In addition, the kernel trick [19] is also widely used to extend
linear feature extraction algorithms to nonlinear ones by
performing linear operations in a higher or even infinite-
dimensional space transformed by a kernel mapping
function. Despite the success of LDA and its variants [13],

borhood Margin Maximization (ANMM) [32], and Discri-
minative Locality Alignment (DLA) [46]. It has also been
found that the Fisher criterion can be well solved by
iterative discrepancy criterions [34]. Zhao et al. have found
that the discrepancy criterion can be adapted into the
framework of semi-Riemannian manifolds [50]. They devel-
oped Semi-Riemannian Discriminant Analysis (SRDA)
using this framework [50]. All these discrepancy-criterion-
based methods are supervised methods.

In many real-world applications, labeled data are hard or
expensive to obtain. This makes it necessary to utilize
unlabeled data. Both labeled and unlabeled data can
contribute to the learning process [3], [53]. Consequently,
semisupervised learning, which aims at learning from both
labeled and unlabeled data, has been a hot topic within the
machine learning community [53]. Many semisupervised
learning methods have been proposed, e.g., Transductive
SVM (TSVM) [31], Cotraining [5], and graph-based semi-
supervised learning algorithms [3], [28], [52]. Semisuper-
vised dimensionality reduction has been considered
recently, e.g., semisupervised discriminant analysis (SDA
[6] and SSDA [48]). However, SDA and SSDA also suffer
from the problems of the Fisher criterion, as a result of
which both of them use Tikhonov regularization to deal
with the singularity problem as in regularized discriminant
analysis [7]. In [43] a graph-based subspace semisupervised
learning framework (SSLF) has been developed as a
semisupervised extension of graph embedding [41] and
several semisupervised algorithms, including SSLDA,
SSLPP, and SSMFA, are provided. Supervised methods
based on the discrepancy criterion have also been extended
to the semisupervised case, e.g., Semisupervised Discrimi-
native Locality Alignment (SDLA) is the semisupervised
counterpart of DLA [46]. SDA, SSLF, and SDLA only utilize
the smooth regularization on unlabeled or all data, while
SSDA adds a term to capture the similarity between
unlabeled data points and class centers of labeled data.

600 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 4, APRIL 2011

. W. Zhang is with the Department of Information Engineering, The Chinese
University of Hong Kong, P.R. China. E-mail: zw007@ie.cuhk.edu.hk.

. Z. Lin is with Visual Computing Group, Microsoft Research Asia, 5th
Floor, Sigma Building, Zhichun Road 49#, Haidian District, Beijing
100190, P.R. China. E-mail: zhoulin@microsoft.com.

. X. Tang is with the Department of Information Engineering, The Chinese
University of Hong Kong, P.R. China, and Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sciences, P.R. China.
E-mail: xtang@ie.cuhk.edu.hk.

Manuscript received 29 Mar. 2009; revised 25 Sept. 2009; accepted 29 Dec.
2009; published online 24 Aug. 2010.
Recommended for acceptance by S. Zhang.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2009-03-0219.
Digital Object Identifier no. 10.1109/TKDE.2010.143.

1041-4347/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society





. Heterogeneous Neighborhoods�N
�K

i : the set of �K most
similar data not in the same class of x i .

Taking ANMM [32] as an example, the average
neighborhood margin � i for x i in the projected space can
be measured as

� i ¼
X

j 2 �N
�K

i

1
�K

ky j � y i k
2 �

X

j 2N̂ K̂
i

1

K̂
ky j � y i k

2; ð1Þ

where k � k is the L2-norm. The maximization of such a
margin can project high-dimensional data into a low-
dimensional feature space with high within-class similarity
and between-class separability. Fig. 2 gives an intuitive
illustration of the discrepancy criterion.

3.2 Semi-Riemannian-Geometry-Based Feature
Extraction Framework

The average neighborhood margin can be generalized in the
framework of semi-Riemannian geometry. In contrast to the
local semi-Riemannian metric tensors and the global align-
ment of local semi-Riemannian geometry in [50], we define
global semi-Riemannian metric tensors to unify the discre-
pancy criterion. A global metric tensor encodes the structural
relationship of all data samples to a sample, while in a local
metric tensor only samples in neighborhoods are chosen. For
a sample x i , its metric tensor � i is a diagonal matrix with
positive, negative, or zero diagonal elements:

� i ðj; j Þ
> 0; if x j 2 �N

�K
i ;

< 0; if x j 2 N̂ K̂
i ;

¼ 0; if x j 62 �N
�K

i and x j 62 N̂ K̂
i :

8
>><

>>:

Then, the construction of the homogeneous and hetero-
geneous neighborhoods as well as the metric tensor do not
need to follow those in Section 3.1.

The margin � i can be written as

� i ¼
X

j

� i ðj; j Þky j � y i k
2; ð2Þ

which is in the same form of the space-time interval. So,
we consider the sample space with class structures as a
semi-Riemannian manifold. Unlike Riemannian metric

tensors, which are positive-definite, semi-Riemannian
metric tensors can naturally encode the class structures.
Thus, a semi-Riemannian manifold is more discriminative.

We define a metric matrix G, where the i th column of G
(denoted as gi ) is the diagonal of � i , i.e., gi ¼ ½g1i ; . . . ; gni �

T

and gji ¼ � i ðj; j Þ(j ¼ 1; . . . ; n). An entry gji in G is called a
metric component of a metric tensor gi . The projections can
be learned via maximizing the total margin

� ¼
1
2

Xn

i¼1

� i ¼
1
2

Xn

i;j ¼1

gji ðy j � y i Þ
Tðy j � y i Þ;

¼ tr ðYL G Y TÞ ¼tr ðU TXL G X TU Þ;

ð3Þ

i.e., pulling the structures of samples in the embedded low-
dimensional space toward the space-likeness, where L G is
the Laplacian matrix of 1

2 ðG þ G TÞ. If G is already learned
(detailed in Section 3.3), the optimal linear projection
matrix U , which projects the samples into a d-dimensional
euclidean space and satisfies U TU ¼ I d� d and Y ¼ U TX ,
can be found to be composed of the eigenvectors ofXL G X T

corresponding to its first d largest eigenvalues.
The cases of nonlinear and multilinear embedding can be

easily extended via the kernel method and tensorization,
respectively, as in [29], [32], [47].

3.3 Semisupervised Learning of Semi-Riemannian
Metrics

The key problem in the semi-Riemannian geometry frame-
work is to determine the metric matrix G. Under the
semisupervised setting, the metric matrix G can be divided
into four blocks:

G ¼
GLL ; GLU

GUL; GUU

� �
; ð4Þ

where GLL are the metric components between labeled
samples, GLU and GUL between labeled and unlabeled
samples, and G UU between unlabeled samples. G UL, G LU ,
and G UU are estimated via information propagation from
labeled data to unlabeled data, which is a common technique
in semisupervised learning [53]. Label propagation, as a kind
of information propagation, also appeared in some recent
papers on semisupervised feature extraction, e.g., [20].

In brief, the metric matrix is learned in three steps. First
of all, the metric tensors at labeled sample points, i.e., the
blocks G LL and G UL, are learned. Then, the neighborhood
relationships are propagated from metric tensors at labeled
sample points to unlabeled sample points, i.e., from G UL to
GLU . Finally, the metric tensors at unlabeled sample points,
i.e., G LU and GUU, are learned. Then, the metric tensor at a
point x i is a column vector gi of G. Similar to (4), gi can be
divided into two parts gL

i and gU
i , where gL

i ¼ ½g1i ; . . . ; gli �
T

and gU
i ¼ ½glþ 1;i ; . . . ; gni �

T .

3.3.1 Local Nullity of Semi-Riemannian Manifolds
Null manifolds are a typical class of semi-Riemannian
manifolds, on which each point has a zero space-time
interval, being neither space-like nor time-like (see Fig. 1)
[21]. Inspired by the neutrality of null manifolds, we assume
that the samples in the original high-dimensional space lie on
a null manifold, so that the contributions of the homogeneous
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Fig. 2. An illustration of the margin maximization in the discrepancy
criterion. The elements with the same shape belong to the same class.
(a) x i and its neighbors in the original 2D plane, among which circles
except x i are homogeneous neighbors, while squares and triangles
belong to heterogeneous neighbors. (b) y i and the projected neighbors.



xj in the sample space. So, gUi can be inferred from gLi by
semisupervised regression as follows.

We assume that nearby points are likely to have close
function values, which is known as the smoothness
assumption. So, gji should be close to the metric compo-
nents of gi corresponding to xj’s neighbors. For example, if
xj is surrounded by heterogenous neighbors of xi, gji
should be nonnegative. We choose the similarity measure
ajk between samples xj and xk as

ajk ¼ exp � kxj�xkk2

2�2

� �
; if xj 2 NK

k or xk 2 NK
j ;

0; otherwise;

(
where NK

j and NK
k are the K-nearest neighborhoods of xj

and xk, respectively. In our experiments, K ¼ 5 and � is the
average distance of all sample points to their 6th nearest
neighbors.

Then, we estimate the metric tensor gi by minimizing

�iðgiÞ ¼
1

2

Xn
j;k¼1

ajkðgji � gkiÞ2 þ �l
Xn
j¼1

g2
ji;

¼ gTi ðLA þ �lIn�nÞgi;

s:t: gTi di ¼ 0 and gLi is fixed as in ð7Þ;

ð8Þ

where �l is a regularization parameter to avoid singularity
of LA, which is empirically chosen as 0.01, A ¼ ½ajk�n�n, and
LA is the Laplacian matrix of 1

2 ðA þ AT Þ.
By the Lagrangian multiplier, we get the solution of (8):

gi ¼
gLi
gUi

" #
;

gUi ¼ L�1
UU

ðLULgLi ÞTL�1
UUdU

i

ðdU
i ÞTL�1

UUdU
i

dU
i � LULgLi

 !
;

ð9Þ

where the symmetric matrix ðLA þ �lIn�nÞ is divided into

LLL LLU

LUL LUU

� �
similar to (4) and dU

i ¼ ½d2
lþ1;i; . . . ; d2

ni�
T .

3.3.3 Neighborhood Relationship Propagation

Metric tensors encode the structure of the sample space. The
metric components gji and gij are not independent because
if xj is in the homogenous or heterogenous neighborhood of
xi, xi is probably in the same type of neighborhood of xj.
So, metric tensors of labeled samples provide a priori
information for those of unlabeled samples. However, we
do not propagate all information in GUL as components
with small values are disturbed more easily by noise. So, we
initialize the neighborhoods of unlabeled samples as
follows: In the metric tensor of each labeled sample
xiði ¼ 1; . . . ; lÞ, we choose mK̂

l negative and m �K
l positive

entries from gUi with the largest absolute values, and then,
put xi in the homogeneous or heterogeneous neighbor-
hoods to the corresponding unlabeled samples according to
these entries’ signs. We also put the K̂-nearest and �K-
farthest samples of an unlabeled sample in its homogeneous
and heterogeneous neighborhoods, respectively, as it is
more likely for the K̂-nearest samples to be in the same

class as the sample and the �K-farthest samples to be in
different classes from the sample.

3.3.4 Metric Tensors of Unlabeled Samples

We initialize the metric tensor of an unlabeled sample
xi ði ¼ lþ 1; . . . ; nÞ as (7) for j ¼ 1; . . . ; n, where �N

�K

i and
N̂ K̂

i have been constructed in Section 3.3.3, and denote this
initial value as egi, where egi ¼ ½eg1i; . . . ; egni�T .

Also by the smoothness of metric components, the metric
tensor gi can be estimated by minimizing

 iðgiÞ ¼
1

2

Xn
j;k¼1

ajkðgji � gkiÞ2 þ �u
Xn
j¼1

ðgji � egjiÞ2;

¼ gTi ðLA þ �uIn�nÞgi � 2�uegTi gi þ �uegTi egi;
s:t: gTi di ¼ 0;

ð10Þ

where �u is a control parameter (�u > 0), which is chosen as
�u ¼ 10 in our experiments. The regularization term with
the weight �u requires that the estimated metric tensor is
not far from its initial value.

By the Lagrangian multiplier, gi can be found as

gi ¼ eL�1 egi �
egTi eL�1di

dT
i
eL�1di

di

 !
; ð11Þ

where eL ¼ 1
�u

LA þ In�n.

3.3.5 S3RMM Algorithm

The learned matrix G in the above sections is not the final
form. We shall adjust it in two steps.

Noise reduction. Metric components in GUL, GLU , and
GUU are only estimations, so we need to reduce the effect of
incorrect components. Metric components close to zero are
regarded as unreliable and of little importance in a margin.
Thus, for each metric tensor gi, we set an entry gji to be zero if
xi or xj is unlabeled and jgjij < 1

10 maxgjigki>0jgkij. Besides, gji
and gij should reach an agreement on whether xi and xj are in
the same class. So, we split the metric matrix G to Gþ þ G�,
where Gþ and G� keep the positive and negative entries of G,
respectively, while leaving the remaining entries zero. Then,
update eGþ ¼ minfGþ; ðGþÞTg and eG� ¼ maxfG�; ðG�ÞTg.
Finally, we combine them with a factor � 2 ½0:5; 1�:eG ¼ ð1 � �Þ eGþ þ � eG�, to make the metric tensors tend to
be time-like [50].2 � can be estimated by cross validation.

Balancing contributions of labeled and unlabeled

samples. Because the target samples of classification are
only labeled samples, we suppress the contribution of
unlabeled samples as

eG0 ¼
eGLL; �1

eGLU

�1
eGUL; �2

eGUU

� �
;

where

eG ¼
eGLL

eGLUeGUL
eGUU

� �
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2. Note that the feature extraction process pulls the initially time-like
semi-Riemannian manifold toward the space likeness.



is the metric matrix obtained after noise reduction and the
values of �1 and �2 are chosen to be close to minf1; lmg and
minf1; ð lmÞ2g, respectively. �1 and �2 do not exceed 1 because
the contribution of unlabeled samples should not be more
than that of labeled ones in the total margin (see (3)).

The whole procedure of S3RMM is summarized in Table 1.

4 DISCUSSION

In this section, we would like to discuss and highlight some
aspects of our S3RMM algorithm.

4.1 A General Framework for Semisupervised
Dimensionality Reduction

S3RMM can be viewed as a general framework for
semisupervised dimensionality reduction. First, our margin
maximization reformulation of SRDA [50] provides the
connection between the semi-Riemannian geometry frame-
work and the discrepancy criterion. So, S3RMM can be
integrated with any dimensionality reduction algorithm
based on the discrepancy criterion, e.g., MMC [16], ANMM
[32], and DLA [46], to obtain semisupervised extensions of
them. To create new algorithms, we only need to change the
structural properties of semi-Riemannian metric tensors, i.e.,
the constraints in (5) and (7). Second, in this framework we
utilize the separability and similarity between samples
including labeled and unlabeled ones, instead of the
regularization term on the graph of unlabeled or all samples
used in SDA [6], SSLF [43], and SDLA [46]. The traditional
regularization term is considered as a special case under our
framework (please refer to Appendix B). Finally, we only
use a simple yet efficient way to learn semi-Riemannian
metrics in this paper, and our method may be incorporated
with a number of semisupervised regression methods [53].

4.2 Comparison to SRDA
The major differences between our method and SRDA [50]
are threefold: First, we define global semi-Riemannian
metric tensors rather than local metric tensors as in SRDA.
Second, in SRDA asymmetric semi-Riemannian metrics are
learned locally at each sample xi independently, supervised
by the label information. The relationship among the
metrics at different data samples is not considered. In
contrast, in our method we learn asymmetric metrics from

labeled examples, local consistency in metric tensors and
weak propagation between metric tensors globally. Third,
different from the euclidean/�2 distances assumed known
in SRDA, we use geodesic distances from unsupervised
manifold learning, which do not require any a priori
knowledge of the sample space, to capture the manifold
structure of data.

4.3 Advantages over Semisupervised Discriminant
Analysis

S3RMM has several advantages over semisupervised dis-
criminant analysis (SDA [6] and SSDA [48]). First of all, our
algorithm can be applied to semisupervised dimensionality
reduction with pairwise constraints directly, i.e., we only
need to know pairwise constraints on partial samples, for
learning semi-Riemannian metrics. A pairwise constraint
between two samples, another kind of supervision informa-
tion usually used in semisupervised dimensionality reduc-
tion [12], [45], describes whether they belong to the same
class or not, rather than provides the labels. It might be too
expensive to obtain explicit class memberships in many
real-world applications. For example, in image retrieval it is
much easier to know the relevance relationship between
images, with the logs of user relevance feedback, while
obtaining the exact class label of images requires quite
expensive efforts of image annotation. Second, it is easy to
see that S3RMM avoids the intrinsic problems of LDA [40]:
the singularity problem and limited available projection
dimensions. SDA and SSDA alleviate, but not resolve, these
problems, as their optimization models are in the form of

J ¼
trðUTSbUÞ

trðUTSwUÞ þRðUÞ
;

where RðUÞ is some regularization term on the unlabeled
data [6], [48]. In contrast, S3RMM avoids the singularity
problem, as there is no matrix inversion involved. The
number of possible projection dimensions in S3RMM is not
limited to ðc� 1Þ either because this limitation of LDA
results from the limited ranks of the scatter matrices.

4.4 Connection to Indefinite Kernel PCA
The maximization of the total margin in (3), after learning
the metric matrix G, aims at finding the optimal linear
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TABLE 1
S3RMM Algorithm





margins of samples in the embedded low-dimensional
space. Our algorithm can be a general framework for
semisupervised dimensionality reduction. Compared to
previous semisupervised methods, we utilize both the
separability and similarity criteria of labeled and unlabeled

samples. The links between our method and previous
research are discussed. The effectiveness is tested on face
recognition and handwritten digit classification.

For future work, it would be interesting to see whether
our algorithm can be integrated into an active learning
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Fig. 6. Recognition error rates of S3RMM against the variations of �K on unlabeled and test data of the CMU PIE and FRGC 2.0 databases. The
standard deviations of error rates against the variations of �K are all less than 0.1 percent. (a) CMU PIE and (b) FRGC 2.0.

Fig. 7. Recognition error rates of S3RMM against the variations of �l and �u on unlabeled and test data of the CMU PIE, and FRGC 2.0 databases.
The standard deviations of error rates against the variations of the parameters are also given (a) CMU PIE and (b) FRGC 2.0.

TABLE 2
Recognition Error Rates (Percent, in Mean�Std-Dev) on the CMU PIE and FRGC 2.0 Databases

The reduced error rates of semisupervised methods over their supervised counterparts are given in brackets.



framework. Those zero entries corresponding to unlabeled
data in the metric matrix might indicate the marginal
samples of a sample. Therefore, it is possible to design a
strategy on how to select the most informative samples to
label. It is attractive to explore in this direction.

APPENDIX A

CONNECTION BETWEEN SRDA AND ANMM

In SRDA [50], by the smoothness and local nullity condition
they learn semi-Riemannian metrics as

�gi ¼
�D

�1

i e �K

eT�K
�D

�1

i e �K

; ĝi ¼
eT�K

�Di�gi
�K

D̂�1
i eK̂ ;

where �Di ¼ diagð½d2
ji; j 2 �N

�K

i �Þ, D̂i ¼ diagð½d2
ji; j 2 N̂K̂

i �Þ and
e �K , eK̂ are all-one column vectors. Then, the margin in the
projected space for a sample xi can be written as
�i ¼ �KP

j2 �N
�K
i

d�2
ji

�0
i, where

�0
i ¼

X
j2 �N

�K

i

1
�K

kyj � yik
dji

� �2

�
X
j2N̂ K̂

i

1

K̂

kyj � yik
dji

� �2

: ð12Þ

The only difference between (12) and (1) is the distance
normalization, which can capture the structure of data better.

APPENDIX B

A SPECIAL CASE OF SEMIsUPERVISED
SEMI-RIEMANNIAN FRAMEWORK

In this appendix, we would like to show that the intrinsic
relationship between the conventional graph-based semi-
supervised dimensionality reduction methods, e.g., [43],
and our semisupervised semi-Riemannian framework.

Let A ¼ 0 (which can be achieved by choosing a very
small �), i.e., remove the consistency constraints inside the
metric tensors, and we have GUL ¼ 0 from (8). Following
the neighborhood propagation, we only add K̂-nearest and
�K-farthest neighbors of an unlabeled sample in its homo-

genous and heterogeneous neighborhoods, respectively.
Thus, we have

egji ¼

1
�Kd2

ji

; if xj 2 �N
�K

i ;

� 1
K̂d2

ji

; if xj 2 N̂ K̂
i ;

0; if xj 62 �N
�K

i and xj 62 N̂ K̂
i ;

8>>>><>>>>: ð13Þ

From Fig. 3 it is easy to see that

1

d2
ji

xj2 �N
�K

i

�
1

d2
ji













xj2 �N

K̂

i

as �N
�K

i and �N
K̂

i include �K-farthest and K̂-nearest neighbors,
respectively. Without loss of generality, let egj ¼ K̂egj and we
rewrite eg as

egji ¼
� 1

d2
ji

; if xj 2 N K̂
i ;

0; if xj 62 N K̂
i ;

8<: ð14Þ

Still by A ¼ 0, we have gj ¼ egj. If K̂ ¼ K, then xj 2 NK
i ,

and thus,

gji ¼
� 1

kxj�xik2 ; if xj 2 NK
i ;

0; if xj 62 NK
i :

(
ð15Þ

This leads to the widely used regularization term

gji ¼ �fðkxj � xikÞ; if xj 2 NK
i ;

0; if xj 62 NK
i :

(
ð16Þ

The function fð�Þ is chosen as fð�Þ ¼ 1 in SDA [6], SSLF [43],
and SDLA [46]. Another popular choice is fð�Þ ¼ e�ð�Þ2

�2 .
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